Measuring Dendritic Cells

A.D. Donnenberg, V.S. Donnenberg UNIVERSITY of PITTSBURGH CANCER INSTITUTE

CCS Longbeach 10_04

Measuring DC

- Rare event detection
- The basics of DC measurement
- Applications
 - -Cancer
 - -Asthma
 - -DC trafficking in an animal model

I. Rare Event Detection

- Key elements
- Lower limit of detection
- Fluorochromes
- How many cells to acquire?
- Data analysis: Log-normal model

DCs in the Peripheral Blood

- Find the needle
- Determine that it really is a needle
- Make measurements to determine what kind of a needle it is

Key Elements

- Event frequency Inherent property of sample Enrichment possible
- Signal to noise ratio Minimize noise

Nonspecific binding (1% mouse serum)

Cellular autofluorescence (dump gate, green or red excitation, quenching dyes)

Doublets (ratio of peak height/integral or peak height/width)

Sporadic mechanical or electrical noise (time parameter)

Dead cells (vital dyes)

Maximize signal

Best fluorochrome for most critical determination

Optimal antibody concentration

Know Your Own Limit (of Detection)

• Limit of detection

Frequency of false positives in appropriate negative control (FMO isotype control, FMO isoclonic control, TMer binding of MHC disparate cells, known negative sample)

- Calculate upper 95th or 99th percentile of the frequency false positive in a series of negative controls
- Caution: Rare events are log normally distributed. Use arithmetic means and you will get the wrong answer!

Pull the Noise From the Signal

- Dump channel
- Unique location in multiparameter space
- Use the best fluorochrome for the most critical measurement
 - PE has high quantum efficiency
 - Red line used to excite APC and APC tandems excites less cellular autofluorescence
 - Green line can be used for PE and PE tandems

For a reagents available in several fluorochromes choose the one with the best **signal to noise** ratio for your critical measurement

How Many Cells to Acquire

- Short answer: The rarer the event the more cells required
- Long answer: Depends on
 - Event frequency
 - Tightness of event cluster in multiparameter space
- You can determine the number empirically by determining the precision of replicate determinations
- No matter how many events you acquire, the limit of detection is governed by the signal to noise ratio

Precision of Replicate Determinations

All events in three 5 mL aliquots of leukocyte depleted platelet product were acquired

Detection of leukocytes in filtered platelet components Donnenberg et al Transfusion, 2000.

Predictions of the Normal Model

Negative Control Group (Percent positive)

CD4+ Percent is Normally Distributed

V_β usage is log-normally distributed

A. Linear Scale

Conclusion

Failure to use log transformed data results in:

- Underestimate of the lower limit of detection
- Overestimate in percent positive
- A larger CV and a corresponding <u>loss of power</u> to detect significant differences between groups using parametric tests

II. Basics of DC Measurement

- The DC Differentiation Tree
- Immunophenotypic Markers
- Gating Strategies

Dendritic Cells

- DC are potent APC (acquisition, processing and presentation of Ag to induce MHC-restricted T cell-mediated IR)
- Involved in tolerance induction and regulation of immune reactivity
- Differentiate from myeloid (DC1) and lymphoid (DC2) precursors which give rise to mature DC

Banchereau

DC Markers of Mice and Men

Species	Subset	Phenotype
Murine	Myeloid DC	CD11c ⁺ CD11b ⁺ B220 ⁻ CD8α ⁻
	"Lymphoid-related" DC	CD11c ⁺ CD11b ⁻ B220 ⁻ CD8α ⁺
	Plasmacytoid DC	CD11c ⁺ CD11b ⁻ B220 ⁺ CD8α [±]
	Liver-derived DC	CD11c+CD11b-B220+DEC205+
Human	Monocytoid DC (DC1)	HLA-DR ⁺ CD11c ⁺ CD123 ¹⁰
	Plasmacytoid DC (DC2)	HLA-DR ⁺ CD11e CD123 ^{hi}
	Langerhans Cells	HLA-DR ⁺ CD11c ⁺ CD1a ⁺
	B cell-like DC ^a	HLA-DR ⁺ CD19 ⁺ CD20 ⁺
	Tonsil interdigitating DC	HLA-DR ^{hl} CD11c ⁺
	Tonsil interdigitating DC	HLA-DR ^{bi} CD11c ⁻ CD13 ⁺
	Tonsil interdigitating DC	HLA-DR ^{mod} CD11c ⁻ CD123 ⁻
	Thymic DC ^b	HLA-DR ^{mod} CD11c CD123 ^{bi}
	Thymic DC ^b	HLA-DR ^{mod} CD11c ⁺ CD123 ⁻
	Thymic DC ^b	HLA-DR ^{bi} CD11c ⁺ CD123

Toby

Functional Cell Surface Markers

Antigen uptake receptors DEC-205, MMR Langerin, BDCA-2 DC-SIGN, ASGP-R FCg-R, HSP-R, α_vβ₅

Maturation receptors TLRs TNF-Rs

T cell adhesion & costimulatory molecules DC-SIGN CD86 + MHC clusters

Steinman

Immunomagnetic Isolation of DC1 using BDCA1

Immunomagnetic Isolation of DC2 using BDCA4

BDCA4+ Day 0

BDCA4+IL-3 Day 3

DC in Normal Controls

Dim CD4 Expression on DC1

Intermediate CD4 Expression on DC2

III. Applications

- DC subsets in cancer
- Lung DC in asthma
- DC trafficking in an animal model

Malignant Ovarian Ascites

DC1 and DC2 in Ovarian Ca

DC1 and DC2 in Lung Ca

Preferential Apoptosis of DC1 in Lung Cancer BALs

DC1 Viability

Conclusions

- DC are readily observed in malignant ascites of Ovarian CA and in BAL from Lung Ca patients.
- The relative proportion is similar to peripheral blood (DC1>DC2)
- Peri-tumor DC1 but not DC2 spontaneously apoptose in Ovarian and Lung CA
- In Lung Ca, DC1 in the lung contralateral to the tumor also have elevated apoptosis
- Preferential induction of DC1 apoptosis may represent a tumor survival mechanism (Th2 polarization)

Dendritic Cells in Asthma

- DC are present at the interface between host and environment and can sample and process inhaled antigens
- DC express FceRI and thus capture IgE. This increases the efficiency of processing inhaled allergens
- DC present processed allergens to naive and memory CD4⁺ T cells
- Antigen dose (low), antigen exposure (chronic), costimulatory signals (e.g. CD80/CD86-CD28, CD30-CD30L, CD40-CD40L) and environmental cytokines (IL-4 from mast cells) all favor Th-2 polarization
- DC subsets?

Patients

- 5 healthy volunteer subjects
- 5 atopic asthma patients before and after challenge with *m Farinae*
- BAL before and 3 days after antigen challenge

BAL Composition

BAL014

DC1, DC2 and mature DC in BAL: Asthma Pre/Post Ag challenge

DPG pre

DC2 PBMC IL-3Rα+

DC PBMC CD80+

SUMMARY

- No difference in peripheral DC in asthma and control subjects
- Both groups had detectable DC1 and DC2 (DC1>DC2), but no mature DC in the peripheral circulation
- No difference in BAL DC in asthma (pre challenge) and control subjects: both had DC1>>DC2. Neither had populations of mature DCs
- After antigenic challenge asthma patients had increased DC1 and mature myeloid DC (CD83⁺)

Protocol

- Rhesus macaque
- Monocyte-derived DC cultured with IL-4, GM-CSF, CD40L
 - Immature 3 days
 - Mature 7 days
- Injected subcutaneously
- 36 hours later, draining LN removed and assayed for DiD+ DC
- 1.5 x 10⁶ LN cells assayed in triplicate

Injected DCs mature on route to draining LN

SSC

- Dump Gate
- DiD/red laser: highest SN
- Cultured cells to set + gate
- Contralateral LN to get LLD
- Triplicate determinations to measure SD

Conclusions

- DC measurement is a rare event problem
- DC subsets and function can be measured by multiparameter flow cytometry
 - Apoptosis
 - Expression of costimulatory and adhesion molecules
 - Cytokine secretion
- DC biology is important in cancer, allergy, autoimmunity, infectious disease, transplantation, vaccines

Acknowledgements

- Vera Donnenberg
- Members of AVDLab past and present
 - E Michael Meyer
 - Debe Griffin
 - Dawn Betters
 - Anita Popovic
- Angus Thomson
- Toby Coates
- William Calhoun
- James Luketich
- Simon Barratt-Boyes

