BMS 631 - LECTURE 15 Flow Cytometry: Theory

J.Paul Robinson Professor of Immunopharmacology School of Veterinary Medicine, Purdue University

Food Science & Microbiology

Hansen Hall, B050 Purdue University Office: (765) 494 0757 Fax (765) 494 0517 email\; robinson@flowcyt.cyto.purdue.edu

WEB http://www.cyto.purdue.edu

Flow Cytometry & Microbiology

- History
- Major problems
- Potential applications
- Clinical applications
- Future

Publications in Thousands

Papers Published

Relative Ratios

<u>Measurement</u>	Bacteria	Yeast	Eukaryotic
Linear	0.5-5	3-5	
Surface ¹⁰⁻³⁰	3-12	30-75	300-3000
Volume	0.3-3	20-125	500-1500
Dry Cell Mass	1	10	300-3000

Membrane Potential

- 1. Presence of live bacteria
- 2. Partial identification
- 3. Quantitation
- 4. Antibiotic sensitivity

Application of Membrane Potentials in Flow Microbiology

Ratios using DNA Dyes

Chromomycin A3 [G-C]

Ratios using DNA Dyes

Chromomycin A3 [G-C]

Comparison of Flow & Traditional Methods

Clinical Microbiology Applications

Required Information

- 1. Bacterial presence
- 2. Concentration/number
- 3. Identification
- 4. Antibiotic sensitivity

Blood

- Too many cells
- Too few bacteria

CSF

- Too few organisms
- Blood cells present

Urine

- High organism count
- 50% of specimens

Clinical Microbiology

Infectious Diseases

200 x 10⁶ Samples/year

Urine Analysis

- 1. 50% of workload
- 2. 100 x 10⁶
- 3. ~80% samples negative
- 4. 5-24 hour detection time

Determination of Growth Rates

Strategies for Detection of Microorganisms by Flow Cytometry

- •Detect any microbe present in sample
- •Determine if the microbe is viable
- •Determine if a particular species or strain of organism is present in sample

The Strateg E Components

- •Quality Control
- •Light scatter of bacteria
- •Detection of bacteria using fluorescent dyes
- •Organism viability
- •Specific identification of pathogenic bacteria

Recommended Quality Control Procedures for Microbiological Applications of Flow Cytometry

- •Standard instrument set-up (alignment beads)
- •Filter sheath fluid and buffers with 0.1 um filter
- •Spike bacteria samples with latex beads
- •Reference standards for bacteria

i.e. Fixed *E.coli* cells, *Bacillus* spores

Bacillus subtilis spores spiked with 1.0 um latex beads.

Light scattering profiles for qualitative analysis of pathogenic bacteria

- •Set discriminator or threshold to reduce amount of debris
- •Establish regions of interest
- •Spike bacterial samples with latex beads of known size

Prokaryotes vs. Eukaryotes

Comparison of light scatter profiles of prokaryotes and eukaryotes.

•Size, mass, nucleic acid and protein content of bacteria is 1/1000 of mammalian cells

•In bacteria, considerable variation in accessibility of cell interior to dyes -gram-negative vs. gram-positive -vegetative cells vs. spores -capsule formation -efflux pump

Microbial Discrimination and Identification Using Light Scattering

- Debris and nonbiological particulates
- Sample preparation
- Growing bacteria single cells vs. chains/clusters
- Mixed suspensions of bacteria size vs. refractive index vegetative vs. spores

Debris vs. Bacteria

Aerosol sample of *Bacillus subtilis* spores with debris.

Light Scatter Changes Growing Culture vs. Fixed cells

Light scatter changes due to Sample Preparation

log FS

© 2002 J.Paul Robinson

Page 27

Mixed suspensions of bacteria Identification on scatter alone?

log FS

log FS

Light scatter signature of a mixture of <u>B.subtilis</u> spores (BG) and <u>E.coli</u> cells. © 2002 J.Paul Robinson

Light Scatter of Bacterial Spores

FS

Light scatter signals from a mixture of live <u>*B.anthracis*</u> spores, live <u>*B. subtilis*</u> spores and gamma irradiated <u>*B. anthracis*</u> spores. © 2002 J.Paul Robinson

Rapid Detection of Pathogenic Bacteria Using Fluorescent Dyes

Purpose:

To determine if bacteria are present or not in unknown sample

Method:

To fix or not to fix?? -Maintain morphological integrity -Fluorescent probe must enter the cell

Nucleic Acid Content

- Distinguish bacteria from particles of similar size by their nucleic acid content
- Fluorescent dyes

 must be relatively specific for nucleic acids
 must be fluorescent only when bound to nucleic acids
- Examples
 - -DAPI -Hoechst 33342 -cyanine dyes YoYo-1, YoPro-1, ToTo-1

© 2002 J.Paul Robinson

Specific Identification of Pathogenic Bacteria

- Flow Cytometric Immunoassays
 Polyclonal vs. Monoclonal Antibodies
 Enrichment Cultures
 Microsphere beads assays for toxins
- Nucleic Acid Sequences

Microbial Identification Using Antibodies

Enumeration & identification of target organisms in mixed populations

Examples include:

- *Legionella* spp. in water cooling towers
- Cryptosporidium & Giardia in water reservoirs
- Listeria monocytogenes in milk
- <u>E.coli</u> O157:H7 in contaminated meat
- Bacillus anthracis & Yersinia pestis biowarfare agents

Advantages

<10 min. direct assay <40 min. with enrichment broth

<u>E.coli</u> 10⁴ cells/ml <u>B.anthracis</u> 10⁵ cells/ml

- Can be combined with viability probes
- Fixation is not always necessary
- Applications include clinical, water, food, etc.

Disadvantages

- Sensitivity, specificity and reliability of assay depends on antibody quality
- Very few commercially available antibodies for bacteria
- MAb preferred but expensive to prepare
- PCAb easy/cheap to prepare but not specific
- Genetic variability of bacteria

Unstained E.coli O157:H7.

Flow cytometric identification of <u>*E.coli*</u>O157:H7 stained with FITC-labeled anti-<u>*E.coli*</u>O157:H7 polyclonal antibody.

© 2002 J.Paul Robinson

Flow cytometric identification of <u>*E.coli*</u>O157:H7 stained with FITC-labeled anti-<u>*E.coli*</u>O157:H7 polyclonal antibody in beef.