Measuring Dendritic Cells
A.D. Donnenberg, V.S. Donnenberg

UNIVERSITY of PITTSBURGH CANCER INSTITUTE




Measuring DC

» Rare event detection
* The basics of DC measurement
* Applications

—Cancer

—Asthma

—DC trafficking 1n an animal model



I. Rare Event Detection

* Key elements

* Lower limit of detection

* Fluorochromes

* How many cells to acquire?
 Data analysis: Log-normal model



DCs in the Peripheral Blood

* Find the needle
» Determine that it really 1s a needle

e Make measurements to determine what kind of
a needle 1t 1s




Key Elements

* Event frequency
Inherent property of sample
Enrichment possible

« Signal to noise ratio

Minimize noise
Nonspecific binding (1% mouse serum)
Cellular autofluorescence (dump gate, green or red excitation,
quenching dyes)
Doublets (ratio of peak height/integral or peak height/width)
Sporadic mechanical or electrical noise (time parameter)
Dead cells (vital dyes)

Maximize signal
Best fluorochrome for most critical determination
Optimal antibody concentration



Know Your Own Limit (of Detection)

 [1mit of detection

Frequency of false positives in appropriate negative

control (FMO 1sotype control, FMO 1soclonic control,
TMer binding of MHC disparate cells, known
negative sample)

 Calculate upper 95" or 99t percentile of the
frequency false positive 1n a series of negative
controls

« Caution: Rare events are log normally distributed.
Use arithmetic means and you will get the wrong
answer!



Pull the Noise From the Signal

e Dump channel
* Unique location in multiparameter space

e Use the best fluorochrome for the most critical
measurement
— PE has high quantum efficiency

— Red line used to excite APC and APC tandems
excites less cellular autofluorescence

— Green line can be used for PE and PE tandems



For a reagents available in several fluorochromes
choose the one with the best signal to noise ratio for

your critical measurement
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How Many Cells to Acquire

Short answer: The rarer the event the more cells
required

Long answer: Depends on

— Event frequency

— Tightness of event cluster in multiparameter space

You can determine the number empirically by
determining the precision of replicate determinations

No matter how many events you acquire, the limit of
detection 1s governed by the signal to noise ratio



Precision of Replicate
Determinations

All events in three 5 mL aliquots of leukocyte depleted
platelet product were acquired
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Predictions of the Normal Model

Lower limit of
detection

«<— Central 95% —
(1.96 * Std. Dev.)

Lower Cut

Upper Cut

Negative Control Group (Percent positive)



CD4+ Percent is Normally Distributed
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VB usage is log-normally distributed

A. Linear Scale
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Conclusion

Failure to use log transformed data results 1n:
 Underestimate of the lower limit of detection
* (Overestimate 1n percent positive

» A larger CV and a corresponding loss of power
to detect significant differences between
groups using parametric tests




ll. Basics of DC Measurement

 The DC Differentiation Tree
* Immunophenotypic Markers

* Gating Strategies



Dendritic Cells

« DC are potent APC (acquisition, processing and
presentation of Ag to induce MHC-restricted T cell-
mediated IR)

* Involved in tolerance induction and regulation of
Immune reactivity

 Differentiate from myeloid (DC1) and lymphoid
(DC2) precursors which give rise to mature DC
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DC Markers of Mice and Men

Toby

~Bpecies Subset Phenotype

Mmine Myeloid DC CD11¢*CD11b"B220~CD8 o™
“Lymphoidrelated” DC  CD11c*CD11b~B220-CD8«*
Plasmacytoid DC CD11c*CD11b-B220*CD8wx*
Liver-derived DC CD11¢*CD11b~B220*DEC205*

Human Monocytoid DC(DC1)  HLA-DR*CD11ctCD123%
Plasmacytoid DC (DC2) HLA-DR*CD1le"CD123%
Langerhans Cells HLA-DR*CD11c*CD1a*
B celldike DC* HLA-DR*CD19*CD2*
Tomsil interdigitating DC  HLA-DRECD11¢*
Tonsil interdigitating DC  HLA-DR®CD11c~CD13*
Tonsil interdigitating DC  HLA-DR®*CD11c~CD123~
Thymic DCP HLA-DR™™CD11c~CD123"
Thymic DC HLA-DR™*CD11c*CD123~
Thymic DC HLA-DRMCD11¢*CD123~




Functional Cell Surface Markers

Maturation receptors

TLRs
TNF-Rs

Antigen uptake receptors
DEC-205, MMR
Langerin, BDCA-2
DC-SIGN, ASGP-R
FCg-R, HSP-R, o, s

T cell adhesion &
costimulatory molecules

DC-SIGN
CD86 + MHC clusters

Steinman



Immunomagnetic Isolation of
DC1 using BDCA1

BDCA1+ Day 0 +IL-4 and GM-CSF Day 3

.1 *Start 680 000

| _ ‘Recovered
w7 172 000

*Purity 66%

FL2 CD11c pe -->
1 2 3

R i.,G
3 10‘

101 102 10
FL4 HLA-DR pc§ -->




Immunomagnetic Isolation of
DC2 using BDCA4

BDCA4+ Day 0

BDCA4+IL-3 Day 3
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DC in Normal Controls
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Dim CD4 Expression on DC1
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Intermediate CD4 Expression on DC2
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lll. Applications

e DC subsets 1n cancer
 Lung DC 1n asthma

* DC trafficking in an animal model



- Malignant Ovarian Ascites

F 3

Tumor progenitor cell

OVAO3 Ascites



DC1 and DC2 in Ovarian Ca
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DC1 and DC2 in Lung Ca
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Preferential Apoptosis of DC1 in

Lung Cancer BALs

PBMC
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BAL
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DC1 Viability

BAL Lung Cancer
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Conclusions

DC are readily observed in malignant ascites of
Ovarian CA and in BAL from Lung Ca patients.

The relative proportion is similar to peripheral blood
(DC1>DC2)

Peri-tumor DC1 but not DC2 spontaneously apoptose
in Ovarian and Lung CA

In Lung Ca, DCI 1n the lung contralateral to the
tumor also have elevated apoptosis

Preferential induction of DC1 apoptosis may
represent a tumor survival mechanism (Th2
polarization)




Dendritic Cells in Asthma

» DC are present at the interface between host and
environment and can sample and process inhaled antigens

* DC express FceRI and thus capture IgE. This increases the
efficiency of processing inhaled allergens

* DC present processed allergens to naive and memory CD4"
T cells

« Antigen dose (low), antigen exposure (chronic),
costimulatory signals (e.g. CD80/CD86-CD28, CD30-
CD30L, CD40-CD40L) and environmental cytokines (1L-4

from mast cells) all favor Th-2 polarization
* DC subsets?



Patients

* 5 healthy volunteer subjects

* 5 atopic asthma patients before and
after challenge with m Farinae

 BAL before and 3 days after antigen
challenge



BAL Composition

BALO14



DC1, DC2 and mature DC in BAL.:
Asthma Pre/Post Ag challenge
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DC1 BAL CD11c+

0.20 .

P=0.025
0.15¢1 %‘
0.10¢ r

0.05¢

0.00' — '+ = — — |

OO:;Q?\:;;\:\@?V
DC1 BAL CD83+
0.09 . . M

0.081P=0.025

Percent Positive
(@)
(@)
N

DC2 BAL IL-3Ra+

0.20 . .
P=0.034
0.15F

0.10}

0.05F .
i
0.6 —-%—WQ—Z'—‘——
»\@O\, ?Qg/ O%«
N

DC1 BAL CD80+
0.20 —————

Percent Positive

0.15}

0.10f g
0.05¢
0.CC --%"%g";-
«?*O\/ & 00
R )
OO »\‘?\ @V

O
N ?&'ﬁ

Percent Positive




SUMMARY

No difference 1n peripheral DC 1n asthma and control
subjects

Both groups had detectable DC1 and DC2 (DC1>DC2), but
no mature DC 1n the peripheral circulation

No difference in BAL DC 1n asthma (pre challenge) and
control subjects: both had DC1>>DC2. Neither had

populations of mature DCs

After antigenic challenge asthma patients had increased
DC1 and mature myeloid DC (CD83")



Protocol

Rhesus macaque
Monocyte-derived DC cultured with I1L-4,
GM-CSF, CD40L

e Immature 3 days
* Mature 7 days

Injected subcutaneously
36 hours later, draining LN removed and

assayed for DiD+ DC
1.5 x 10° LN cells assayed in triplicate



Injected DCs mature on route to draining LN

Immature DC Mature DC
Cultured cells Cultured cells

Dump Gate
DiD/red laser: highest SN
Cultured cells to set +

~ Draining lymph node

* Total cells Total cells

gate
Contralateral LN to get
LLD i _

. . . | ' DiD" cells | DID’ cells
Triplicate determinations ; 0TR0A% | 0502000%
to measure SD A3 e |
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Conclusions

 DC measurement 1s a rare event problem

* DC subsets and function can be measured by
multiparameter flow cytometry
— Apoptosis
— Expression of costimulatory and adhesion molecules
— Cytokine secretion

* DC biology is important in cancer, allergy,

autoimmunity, infectious disease, transplantation,
vaccines
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