Physics Rotation for Radiation Oncology Residents

- 1. Treatment room (Linac vault):
 - Observe patient treatments to become familiar with
 - □ linear accelerator controls
 - record and verify system, as used to deliver the radiation treatment
 - patient set up and patient-specific dosimetry
 - isocentric (SAD)
 - > SSD
 - extended SSD
 - > electrons
 - > use of bolus, blocks and MLC
 - immobilization devices
 - in vivo dosimetry
 - > gated treatments

2. Dosimetry and Physics

- Dosimetry
 - observe image import from CT, PET/CT, and MR scanners and from Stentor
 - observe import and export of images, contours and plans to D3 and other UPMC sites
 - observe image fusion PET/CT, MR/CT and CT/CT
 - learn treatment planning tools
 - develop basic 2D & 3D plans
 - learn hand calculations on computer plans
 - learn gap calculations
 - time dose fractionations (TDF)
- Physics
 - observe daily machine QA's (linac and HDR) get familiar with applicable tolerance limits on daily output variations of a linac and on mechanical parameters
 - observe monthly QA on linac and CT sim get familiar with applicable tolerances and understand their impact on the accuracy of patients treatment delivery
 - If possible, observe annual QA on a linac and treatment planning systems.
 - observe and understand principles and limitations of in vivo dosimetry measurements using (as applicable)
 - > TLDs
 - Diodes
 - > MOSFET

- observe physics plan checks
- **observe and understand IMRT plan approval process**
 - plan evaluation
 - plan verification by phantom validation and applicable tolerances
 - > physics consultation report writing
- observe special procedures, as applicable
 - > HDR
 - > PSI
 - > Vicromesh
 - > TBI
 - > 4D CT for respiratory gated treatments
 - Radiosurgery (Cyberknife, linac and Gamma Knife)
- understand regulatory issues concerning radiation safety, licensing and equipment calibration

3. Simulation

- observe CT simulation
- observe preparation of immobilization devices such as vacbag, thermoplastic head mask, etc.
- observe preparation of custom boluses and internal shields, etc.

4. D3

- observe IMRT planning process
 - contours
 - dose prescriptions
 - dose constraints
 - plan optimization
 - plan evaluation
- 5. If possible get involved in current physics research and/or development projects.