Find a Member
Finding the right member is just a click away.
Finding the right member is just a click away.
Dr. Li has broad knowledge in medicine, biology, and drug and gene delivery and has established a strong research program centered at the interface of biology and biotechnology.
His lab has developed several novel delivery systems that are aimed to solve major issues in his fields through improved understanding of the fundamental aspects of drug formulations and comprehensive structure-activity relationship (SAR) study. His group proposed the concept of “new amphiphilic surfactants with interfacial drug-interactive motif”, which has helped to solve the problem of formulating many “hard-to-formulate” drugs (Molecular Pharmaceutics, 2013; Biomaterials, 2015). Another breakthrough from Dr. Li’s group is the development of ultrasmall nanocarriers for improved cancer treatment (Theranostics, 2020; Biomaterials, 2021, Materials Today, 2023). Dr. Li’s group has discovered that covalent coupling of nucleosides-based drugs (such as gemcitabine, azacitidine, cytarabine, decitabine, and others) into an amphiphilic polymeric carrier led to a drastic reduction in sizes from ~150 to ~15 nm. This system is highly effective in codelivery of various front-line water-soluble and water-insoluble drugs. Due to its ultrasmall size, this technology holds promise in overcoming the challenge of ineffective tumor accumulation and penetration seen in cancer patients. More recently, his group has developed another new delivery system that is highly efficient in tumor accumulation through targeting CD44 on tumor endothelial cells (ECs) (Nature Nanotechnology, 2023). This system is suitable for delivery of small molecules or nucleic acids alone or codelivery of both types of therapeutics.
In addition to the development of improved delivery systems, Dr. Li’s group has sought to uncover new mechanisms involved in resistance to chemotherapy and/or immunotherapy. His lab has recently identified glutamate metabotropic receptor 4 (GRM4) as a novel negative regulator in antitumor immunity in multiple tumor models (Science Advances, 2021). More recently, Dr. Li’s group has identified Xkr8 as a novel gene that is critically involved in chemotherapy-induced immune suppression and cancer relapse, suggesting a new combination therapy via targeting Xkr8 (Nature Nanotechnology, 2023).