Investigators

Find a Member

Results

Natasha Galanina

Natasha Galanina

Program: Cancer Therapeutics

Summary

As a clinician investigator, I am interested in the development of novel, biologically-informed therapies for relapsed/refractory high grade lymphoma. In particular, my clinical research is focused on understanding the molecular genomic profile of each tumor in order to match it to cognate therapeutic agents, an approach that provides a foundation for precision medicine trials that create individualized treatment regimens for each patient. As part of this effort, I would like to align my research with the investigators in the Precision Medicine Institute and the Center for Immunotherapy.…
Read More
Ferruccio Galbiati

Ferruccio Galbiati

Program: Cancer Biology

Summary

Most cells can not divide indefinitely due to a process termed cellular senescence. Because cancer cells need to escape cellular senescence in order to proliferate and eventually form tumors, it is well accepted that cellular senescence is a powerful tumor suppressive mechanism. In addition, since several molecular changes that are observed in senescent cells occur in somatic cells during the aging process, investigating the molecular mechanisms underlying cellular senescence will also allow us to better understand the more complicated aging process. Thus, molecules that regulate cellular…
Read More
Deborah Galson

Deborah Galson

Program: Genome Stability

Summary

Dr. Deborah Galson's laboratory is focused on two main areas: (1) Determining the mechanism by which multiple myeloma (MM) cells reduce bone formation via suppression of the differentiation capacity of osteoblast progenitor cells in a manner that persists even after removal of the myeloma cells. These MM-altered bone marrow stromal cells also enhance osteoclastogenesis and microenvironmental support of myeloma growth. We have shown that myeloma cells induce the upregulation of expression of the transcriptional repressor Gfi1 in osteoblast precursor cells and that Gfi1 has a role in…
Read More
Andrea Gambotto

Andrea Gambotto

Program: Cancer Virology

Read More
Madhavi Ganapathiraju

Madhavi Ganapathiraju

Program: Cancer Biology

Read More
Shou-Jiang Gao

Shou-Jiang Gao

Program: Cancer Virology

Read More
David Gau

David Gau

Program: Cancer Biology

Summary

My current research focuses on the role of the tumor microenvironment in regulation of kidney cancer. In particular, I am interested in exploring the therapeutic benefit of targeting Profilin-1, an actin-binding protein, in endothelial cells in the tumor microenvironment as a potential treatment for kidney cancer. Kidney cancer is a pathology characterized by excessive vascularization of the tumor microenvironment. My previous work has demonstrated that Profilin-1 plays a key role in regulating the angiogenic potential of endothelial cells. Using small molecule inhibitors I developed during…
Read More
Charles Geyer

Charles Geyer

Program: Cancer Therapeutics

Summary

Dr. Geyer’s research interests include the design, implementation, and analyses of phase III clinical trials in early breast cancer that evaluate new therapeutics and diagnostics with potential for changing existing standards of care. More broadly, his focuses include immunology and immunotherapy, cancer therapeutics, biology and virology, and genome stability. Dr. Geyer has co-authored more than 100 peer-reviewed publications and served as co-chair of steering committees for practice-changing international phase III studies such as the KATHERINE and OlympiA…
Read More
Joseph Glorioso

Joseph Glorioso

Program: Cancer Virology

Summary

Dr. Glorioso has spent his career studying the molecular biology and immunology of HSV and the last 20 years developing HSV gene vectors for local and systemic therapies. He is a world-wide leader in this field and has the expertise to develop the technology related to the treatment of diseases of the peripheral and central nervous system. His interest in peripheral nerve disease has included nerve degeneration due to diabetes and cancer drug therapies that have led to treatments of animal models. Studies to understand the pathophysiology of chronic pain and the identification of gene therapy…
Read More
Yi-Nan Gong

Yi-Nan Gong

Program: Cancer Immunology and Immunotherapy

Summary

I am an assistant professor of immunology at the University of Pittsburgh and member of Tumor Microenvironment Center at UPMC Hillman Cancer Center. My research focuses on the mechanisms that control cell death and how the quality of cell death can modulate the immune response, especially anti-tumor immunity. I have actively pursued research in cell death and immunology for fifteen years, at Beijing Normal University and National Institute of Biological Sciences, Beijing, China as a graduate student, St. Jude Children’s Research Hospital as a postdoc, and the University of Pittsburgh as…
Read More
Vanathi Gopalakrishnan

Vanathi Gopalakrishnan

Program: Cancer Biology

Summary

Dr. Gopalakrishnan is a tenured associate professor of biomedical Informatics. Her primary research focus over the past two decades has been on biomarker discovery from multiple types of biomedical data via novel integrative modeling using hybrid machine learning methods being developed and tested in her lab. She is fundamentally interested in technologies for data mining and discovery that allow incorporation of prior knowledge.  Her lab has applied novel variants of rule learning techniques for biomarker discovery, prediction and monitoring of diverse diseases including…
Read More
Rachel Gottschalk

Rachel Gottschalk

Program: Cancer Immunology and Immunotherapy

Summary

Understanding how extracellular signals are linked to gene expression is a fundamental challenge in biology, and more specifically, macrophage signal integration is central to understanding healthy versus aberrant regulation of inflammation. My laboratory uses quantitative approaches to address these problems, with major projects including (1) computational modeling of signaling-to-transcription in macrophages, (2) interrogating tissue-specific macrophage signaling, and (3) dissecting molecular determinants of macrophage inflammatory function. We use both data-driven and mechanistic…
Read More
Joel Greenberger

Joel Greenberger

Program: Genome Stability

Summary

Dr. Greenberger is examining the use of manganese superoxide dismutase (MnSOD) plasmid liposome gene therapy and GS-nitroxides, and other new second generation probiotics LR-IL22 and LR-IFN-B as agents to protect the normal tissues in the esophagus and lung from damage during radiation therapy. Damage to normal tissues during radiation therapy has been a major limitation to the effective treatment of lung cancer. The goal of his research is to improve the quality of life for cancer patients by potentially allowing the use of higher doses of radiation or chemotherapy to effectively treat lung…
Read More
Angela Gronenborn

Angela Gronenborn

Program: Cancer Virology

Summary

Research in my lab combines nuclear magnetic resonance (NMR) spectroscopy and other structural biology methodologies with biophysics, biochemistry, and chemistry to investigate cellular processes at the molecular and atomic levels in relation to human disease. We presently focus on two main areas in biology: gene regulation and HIV pathogenesis. To understand how biological macromolecules work and intervene with respect to activity and function, detailed knowledge of their architecture and dynamic features is required. Evaluation of the major determinants for stability and conformational…
Read More
Haitao Guo

Haitao Guo

Program: Cancer Virology

Summary

Research in my lab is focused on the viral pathogenesis of hepatitis B virus (HBV) and antiviral discovery. HBV is the etiologic agent of viral hepatitis B, a disease affecting approximately 300 million people worldwide who suffer the high risk of liver failure, cirrhosis, and liver cancer. My laboratory aims at understanding the molecular mechanisms of HBV DNA replication and morphogenesis, with special focus on the biosynthesis and regulation of HBV covalently closed circular (ccc) DNA, which is the persistent form of HBV infection, and is the culprit for the failure of current antiviral…
Read More
Aditi Gurkar

Aditi Gurkar

Program: Genome Stability

Read More

View Investigators by Last Name

Searching investigators, please wait.