Find a Member

Full Investigator List

Finding the right member is just a click away.

Zhou Wang

Zhou Wang

Program: Cancer Biology Shadyside Medical Center, Suite G40
5200 Centre Avenue
Pittsburgh PA

One major focus of my research is to identify and characterize androgen-response genes in the prostate. One of the androgen response genes, U19/EAF2, plays an essential role in androgen action and prostate cancer progression. U19/EAF2 is directly regulated by androgens in prostate epithelial cells. U19/EAF2 downregulation and loss of heterozygosity were observed in more than 80% of advanced human prostate cancer specimens, indicating its essential role in prostate cancer progression. Overexpression of U19/EAF2 in all of the assayed prostate cancer cell lines induced apoptosis both in vitro and in vivo. Furthermore, we showed that U19/EAF2 gene knockout in mice resulted in lung adenocarcinoma, hepatocellular carcinoma, and B cell lymphoma, demonstrating that U19 is a tumor suppressor. Although no prostate cancer was detected in U19 knockout mice, prostate hyperplasia and high grade PIN (prostatic epithelial neoplasia) was observed in the prostate, demonstrating that U19/EAF2 plays a critical role in prostate cancer. Our current research focuses on the roles of U19-binding partners and U19-downstream genes.

Another area of research interest is androgen receptor (AR) intracellular trafficking in prostate cancer cells, especially in androgen-refractory prostate cancer cells. In androgen-sensitive prostate cancer cells, AR is localized to the cytoplasm in the absence of ligand. The presence of ligand induces nuclear translocation of AR and the nuclear localized, liganded-AR transactivates downstream genes. However, in androgen-refractory prostate cancer cells, AR is localized to the nucleus in the absence or presence of ligand. Ligand-independent AR activation is thought to play a critical role in the development of androgen-refractory prostate cancer. Ligand-independent AR nuclear localization is a prerequisite for AR to undergo ligand-independent activation. Elucidating the mechanism of AR ligand-independent nuclear localization may provide insights into the mechanism of androgen-refractory prostate cancer development, which may lead to new targets for the treatment of androgen-refractory prostate cancer.

We are also interested in translating our research findings into prostate cancer patient treatment. We plan to determine whether intermittent androgen ablation therapy (IAAT) of prostate cancer can be enhanced by 5 alpha-reductase inhibitor, which blocks testosterone conversion to dihydrotestosterone (DHT). We have generated preliminary data indicating that inhibition of the conversion of testosterone to DHT by 5 alpha-reductase inhibitor can enhance the expression of tumor suppressive androgen-response genes during the regrowth of a regressed normal or cancerous prostate. The enhanced expression of tumor-suppressive androgen-response genes should retard the tumor regrowth. Using an androgen-sensitive human prostate xenograft tumor as a model, we showed that 5 alpha-reductase inhibitor finasteride enhanced the efficacy of IAAT. We are establishing collaborations with medical oncologists, urologists, and pathologists to evaluate whether IAAT can be enhanced by 5 alpha-reductase inhibitors in a clinical trial.

In collaborations with Drs. Joel Nelson, Paul Johnston, and Peter Wipf, our lab is trying to identify and develop small molecular inhibitors of AR nuclear localization and function in prostate cancer cells, particularly in castration-resistant prostate cancer cells. Recent studies showed that these small molecules can inhibit prostate cancer cells resistant to the second generation anti-androgen MDV3100. Ongoing research will identify analogs of our lead compounds for pre-clinical and clinical studies.

Research Interests and Keywords
  • androgen receptor
  • intermittent androgen deprivation therapy
  • Prostate cancer
  • tumor suppressors
  • U19/EAF2
Read More about Zhou Wang

View Investigators by Last Name

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z