Find a Member
Finding the right member is just a click away.
Finding the right member is just a click away.
My research focuses on understanding the role of telomere length in human health and disease. Telomeres are caps on the ends of each of chromosomes and shorten as we age. All cancer cells must find a way to maintain their telomeres to sustain tumor growth. Our lab investigates mechanisms that tumors use to maintain their telomeres to identify potential targets for therapeutic intervention. We hope these studies will lead to a deeper understanding of how telomere maintenance contributes to cancer pathogenesis and potentially inform rational therapies.
Research in the Brieno-Enriquez lab focuses on the regulation of gametogenesis in human and mouse and, more specifically, the fundamental mechanisms that are required to produce viable germ cells. Our studies include the analysis of all the different stages of germs cells including primordial germ cells (PGCs), spermatocytes, oocytes, as well as how age affects them. Our long-term goal is to test our overarching hypothesis that gene expression, epigenetic clock, and chromatin structure in the naked mole-rat can be hijacked for use in other species, allowing us to regulate the establishment and maintenance of the ovarian reserve, oocyte quality, and reproductive longevity.
My lab studies DNA damage and repair at telomeres. Telomeres are the caps at chromosome ends that are essential for preserving the genome. When chromosomes lose their telomere caps the cells age and this contributes to the onset of degenerative diseases with aging. If chromosomes lose their telomere caps in pre-cancerous cells, then this causes genetic alterations that hasten the progression to cancer. Understanding mechanisms of telomere damage and repair should lead to new intervention strategies aimed at preserving these regions of the genome that are so critical for protecting our chromosomes and maintaining youthful cells. Conversely, we aim to leverage new findings to develop therapeutic strategies that deplete telomeres in cancer cells to prevent them from dividing.
Dr. Wang’s primary areas of research interest include design and statistical analysis of clinical trials and pre-clinical studies, and correlated survival analysis. Other areas of interest include microbiome data analysis, statistical analysis of Multiplex Immunofluorescence (mIF) data, and in vitro and in vivo radiation survival analysis.
As a Research Associate Professor in the Department of Biostatistics, and Biostatistician and former Interim Director of UPMC Hillman Cancer Center (HCC) Biostatistics Facility, Dr. Wang has been collaborating with HCC medical investigators since 2004 by leading the statistical support of the Skin Cancer, Radiation Oncology, and Prostate/GU program. He has designed over 70 clinical trials. He has been working as a statistical reviewer for UPMC HCC PRC since 2006. He is the Co-Director of Biostatistics/Bioinformatics Core for Melanoma SPORE, and lead statistician for the NCI ETCTN trials Pittsburgh consortium. He has mentored 3 GSRs and advised 2 MS students.